skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, B Theodore"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The origin of Galactic cosmic rays (CRs), particularly around the knee region (∼3 PeV), remains a major unanswered question. Recent observations by LHAASO suggest that the knee is shaped mainly by protons, with a transition to heavier elements at higher energies. Microquasars—compact jet-emitting sources—have emerged as possible PeV CR accelerators, especially after detections of ultrahigh-energy gamma rays from these systems. We propose that the observed proton spectrum (hard below a few PeV, steep beyond) arises from the reacceleration of sub-TeV Galactic CRs via shear acceleration in large-scale microquasar jet-cocoon structures. Our model also naturally explains the observed spectrum of energies around a few tens of PeV by summing up heavier nuclei contributions. Additionally, similar reacceleration processes in radio galaxies can contribute to ultrahigh-energy CRs, bridging Galactic and extragalactic origins. Combined with low-energy CRs from supernova remnants and galaxy clusters around the second knee region, this scenario could provide a unified explanation for CRs across the entire energy spectrum. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Free, publicly-accessible full text available March 1, 2026
  3. ABSTRACT Very-high-energy (VHE) photons around TeV energies from a gamma-ray burst (GRB) jet will play an essential role in the multimessenger era, with a fair fraction of the events being observed off-axis to the jet. We show that different energy photons (MeV and TeV photons in particular) arrive from different emission zones for off-axis observers even if the emission radius is the same. The location of the emission region depends on the jet structure of the surface brightness, and the structures are generally different at different energies, mainly due to the attenuation of VHE photons by electron–positron pair creation. This off-axis zone-shift effect does not justify the usual assumption of the one emission zone at a certain radius and also produces a time delay of VHE photons comparable to the GRB duration, which is crucial for future VHE observations, such as by the Cherenkov Telescope Array. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)